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Lower and Upper Bounds of Cutoff Frequencies in
‘Metallic Waveguides

Lucian Gruner, Member, IEEE

Abstract—It is shown how the upper and lower bounds of the
cutoff frequencies of TE and TM modes in many waveguides
bounded by metallic lossless walls and which may be hollow or
comprise one or more inner conductors, can be computed using
two independent methods. The methods are applicable when-
ever the cross-section of the waveguide can be split up into sev-
eral regions bounded by lines having a fixed coordinate and
includes several cases of practical interest. The theory is illus-
trated with reference to a rectangular coaxial line. 4

I. INTRODUCTION

HE MODE matching technique [1] occupies. an im-
. portant place among various numerical techniques
used to solve microwave problems in general and wave-

guide problems in particular. It is applicable whenever the

cross-section of the waveguide can be split up into several
regions bounded by lines having a fixed coordinate in a
. separable system of coordinates.

Earlier [2] the author has presented some preliminary
findings generalising his previous results [3]-[7] and fa-
cilitating the determination of the mode spectrum of a
wide range of waveguides bounded by metallic walls. A
few of the cross-sections, to which the theory to be dis-
cussed in what follows can be applied, are shown in Fig.
1. :
It was noted earlier [2] that on the basis of preliminary
results, it might be possible to deduce upper and lower
bounds of the cutoff frequencies of various modes and this
has now been confirmed. In addition, since the above pa-
per [2] was written, the author realised that there was not
one but two independent methods of arriving at the upper
and lower bounds and this w111 be discussed in what fol-
lows.

The fact that-upper and lower bounds of the lowest res-
onant TM mode of a re-entrant cylindrical cavity could
be calculated using a mode matching procedure was noted
by Taylor [8], whose findings were based on the work of
Chu [9] but no attempt was made to generalize the results,
nor has the matter been apparently followed up in pub-
lished literature.
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Fig. 1. A few waveguide cross-sections.

- In what follows, it is proposed to deduce formulae fa-
cilitating the determination of the lower and upper bounds
and illustrate the procedure with reference toa rectangular
coaxial line, bounded by lossless metallic walls.

In the past the cutoff frequencies of rectangular coaxial
lines have been determined by the author and other inves-
tigators [3], [4], [6], [10], [11]. In all cases only either
the lower or the upper bound but not both were deduced.

The ability to determine both the upper and lower
bounds, to be discussed in what follows, has the two-fold
advantage of making it potentlally poss1ble to obtain a

considerably more accurate result and reducing the time
required to do so since only lower order determinants need

“to be considered.

II. GENERAL THEORY

Consider a lossless uniform homogeneous waveguide
having a cross-section which can be split up into two re-
gions having fixed coordinates in an orthogonal system of
coordinates. For the purpose of deducing the cutoff fre-
quencies of TE modes, we express the longitudinal com-
ponents of the magnetic field intensity H, in the two re-
spective regions (which need not be bounded by straight
lines, as shown in Fig. 2).by the following two Fourier
series:

Ho = 5 Afi@)6 () - 1)
Hy= L Bug,)éim). @
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Fig. 2. A composite waveguide cross-section.

In the above formulae, x; and x, are coordinates of the
mutually orthogonal axes of the system of coordinates
(rectangular, cylindrical etc.)

The functions ¢} (x,) and ¢2(x,) satisfy orthogonality
conditions of the form:

@R —

<Wl¢ d) > ol 6mn

and
<W2¢r2n¢%>lg§% = KZ 6mn

in the two respective regions while w; and w, are appro-
priate weighting functions.

Moreover f;(x;) and g,,(x;) do not fulfill any orthogo-
nality conditions but are required to meet the boundary
conditions of the particular problem while 4, and B,, are
constant Fourier coefficients.

Let x; = d represent the fixed coordinate of the bound-
ary between the two regions in Fig. 2. In addition, with
the view of simplifying the notation, we denote fi; = f; (x;
=d), gng = 8mx1 = d).

Furthermore f}; and g,,, represent the derivatives of f;
and g,, respectively, evaluated at x; = d.

Hence, using the above notation, the continuity of the
longitudinal component of the magnetic field intensity at
the common boundary is satsified, provided

2 Aifudi = 2 Bugna®in 3

while the continuity of the transverse component of the
electric field intensity implies that

D Afubl = 2 Bugradn @
Remembering that a homogeneous lossless waveguide is
being considered and both regions are filled with the same

medium, multiplying (3) by w,¢2 and (4) by w,¢ s (k =
I) respectively and integrating shows that

L
2 Afulwa 919D |3 = Buguamadnod i 9
Afilwidi b)) [aR = ZBmgmd<wl¢>l<25 >

= %Bmg;nd<w1¢}¢?n> = (6)

when it is noted that along the boundaries o, to oy, as
well as oy, to «; the electric field intensity vanishes.
Moreover, for the purpose of arriving at a numerical so-
lution, the infinite series in (3) and (4) must be truncated,
and hence only L and M terms respectively are retained in
(5) and (6).

When the coeflicients A4, are eliminated from (5) and (6)
and the order of summation is interchanged, we find that

b 2 1,2 a2

2w 85 |

E., = ZZB { Em Zﬁd<W1¢l¢ >a21 291 Pn/ lan
bW ‘ Flkwidll e

mngmd<w2¢' ¢ >|g§?} (7)

Equations (7) have a solution only if their determinant
vanishes and hence the eigenvalues (cutoff frequencies)
are determined by equating the determinant of the M X
M matrix to zero. It is clear that increasing the number of
terms of the inner summation L is considerably less costly
and time-consuming than increasing the order of the de-
terminant M. Hence L can be made very much larger than
M and the inner summation can be performed to a high
degree of accuracy, especially if accelerating factors [4]
are used.

With reference to (3) and (5), it is evident that the con-
tinuity of the magnetic field intensity at the common
boundary surface can be almost perfectly satisfied. On the
other hand the mismatch of the electric field intensity (6) .
can be expected to be much more severe if M << L.

Next, if we let

M
=2 Apfrdn (8)
L
H, = 21: Blgl¢12 ©
and hence
M L
2 Anfua$m = 2 Bigud! (10)
M L
%Amfm,‘n ~ ? Bigioi (11)

and multiply (10) by wy¢7(k = 1) and (11) by w; ¢} and
then perform the integration over the respective regions,
then we find that

M
2 Aufua 299D |35 = BigamoioD i (12)
L
Aufrawi9260> 3 = 2 Bigia(widnd ) I35
L
= 2 Bigawi 6,97 |22 (13)

It will be noted that (8) and (9) differ from (1) and (2)
only in that different indices are used; this has been done
with the view of ensuring that the index [ is reserved for
the inner summation. Moreover the transformation on the
right hand side of (13) follows from the fact that the elec-
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tric field intensity vanishes along o, to oy, and o to oy
when x, = d (Fig. 2).

This time the Fourier coefficients B; can be eliminated
and we find that

M M . .
Ey =22 Am[mdzg’d<w1¢ 297 Ia§?<w2<fl;¢%>
galwr b7 7|22

= Synf malW1Pmbm) Zlf} = 0. (14)
Noting again that L can be made very much larger than
M, with reference to (11) and (13) we observe that this
time the coutinuity of the electric field intensity along the
common boundary can be almost perfectly satisfied, while
the magnetic field intensity on both sides of the boundary
is much more severely mismatched.

When equations E;; and E,; are used to arrive at nu-
merical results, it becomes apparent that as the size of the
determinant (and hence M) is increased, the magnitude of
the cutoff frequency increases for E,; and decreases for
E,|; in other words, while E;; makes it possible to deduce
the lower bound of the cutoff frequency, an upper bound
is obtained with the aid of E,;. -

This result may be understood with reference to the
work of Chu [9] and was noted in one specific instance
by Taylor [8].

Instead of proceeding as above, one can multiply equa-
tion (3) by w, ¢} (letting £k = 1), (4) by w2¢>,2L to be fol-
lowed up in both cases by the appropriate integrations.

Proceeding in a similar manner as above, we find that

M M a 1,2 o

(W) 2> [S2(wi ] d2) |0

E =ZZB,,,{ Zfld 291 21 11
I Falwidl ] y|an

Sun8 a{Wr 2> } = 0. (15

Furthermore, when (10) and (11) are multiplied by w, ¢,

as well as w, ¢ 2 respectively (letting £ = /) and the ap-

propriate integrations are performed, we can eliminate the
B, Fourier coefficients instead to deduce that

M M L 1,24 | 1,2y |

\ (Wi9,01) lah (20,91 o

E =ZZAm{ ' Zgld n all m ol

2w I I ghlwadr o] ) |22

— Snfrma W1 D n b lﬁﬁ} = 0. (16)
It will be noted that (7) and (15) as well as (14) and (16)
respectively have a similar but not identical form. One
major difference are different limits of the two inner prod-
ucts of the inner sum evident in E|, and F,,. The two inner
products of E;, and E,, have the same limits only if oy,
= oy and o, = iy, While no such considerations apply
to E;, and E5;. As an example, when a rectangular coaxial
line is considered, only a single inner product must be
evaluated using (9) and (14) irrespective of whether the
inner conductor is infinitesimally thin, or not. On the other
hand, using (15) and (16) two different inher products are
required, unless the conductor is infinitesimally thin, in
which case one is sufficient.
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When eigenvalues (cutoff frequencies) are calculated
with the aid of E|, and E,,, we find that as the size of the
determinant (i.e., M) is increased, the eigenvalues de-
crease when E|, is used and increase when E,, is applied;
the reasons are similar to those discussed with reference
to E“ and E2|.

To put it differently, E,, yields an upper bound while
E,, yields a lower bound.

Hence there are effectively two independent methods of
arriving at the lower and upper bounds of an eigenvalue, -
using either E;; or E,, and E,, or E;,, respectively.

Next we consider the TM modes. In this case (1) and
(2) are replaced by

Ey = 2 Afir) 61 (%) (a7

Ep = 2 B, gn(r) ¢ 5() (18)
and (8) and (9) must be modified in a similar manner.

Evidently functions £, g,., ¢, and ¢ 2, which must sat-
isfy different boundary conditions, as well as the Fourier
coeflicients 4; and B,, are no longer the same as in (1) and
(2) or (8) and (9) for that matter. However the derivation
of the results follows in an analogous manner and expres-
sions (7) for E,;, (14) for E,;, (15) for E|, and (16) for
E,, still hold, noting that all symbols must be given a dif-
ferent interpretation. Moreover, it is clear that whenever
the continuity of the electric field intensity is satisfied al-
most perfectly for TE modes, the continuity of the mag-
netic field intensity is satisfied by TM modes and vice
versa. Designating the left hand side of (7), (14), (15),
and (16), respectively as M, My;, My, and My, for TM
modes, we find for example that while E; yields a lower
bound, the cutoff frequency calculated with the aid of M,
(having the same form as E|; apart from the interpretation
of symbols) will yield the upper bound etc.

All the above results were derived assuming the pres-
ence of a single common boundary between two regions
(Fig. 2). Considerations of symmetry make it possible to
extend the range of waveguide cross-sections to which the
above theory can be applied and a rectangular coaxial line
having a symmetrically located inner conductor [3] may
serve as an example.

Finally the above theory can be readily extended to sit-
uations when it is necessary to consider three regions and
hence there are two boundaries along which the field must
be matched. In this case two equations from the above set
(7, (14), (15), and (16) must be solved simultaneously
and crossed rectangular coaxial structures [5] may serve
as an example. \

III. RECTANGULAR CoAXIAL LINES

As an example, to illustrate the above theory, we con-
sider a symmetric rectangular coaxial line for which cutoff
frequencies are well known [3]-{4], [6], [10]-[12].

Using the notation of the author’s earlier paper [3], we
note that (Fig. 3) so long as the inner conductor is sym-
metrically located with respect to the outer conductor, it
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Fig. 3. Cross-section of a rectangular coaxial waveguide.
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Fig. 4. TE,, mode cutoff frequency of a rectangular coaxial waveguide (a
=6m,b =6 m, s =5 m, inner conductor infinitesimally thin) as a
function of the determinant size M.

FREQUENCY (MHz)

is possible to consider only a quarter of the cross-section
(Fig. 3(b)), and thereby simplify the analysis. In this case
the field must be matched along FF’, while PN and TL
are electric or magnetic walls, depending on mode order.
Moreover, when the inner conductor is infinitesimally
thin, then it may be considered as an electric wall and
some modes have cutoff wavelengths which are the same
[4] as those of a hollow waveguide having the same di-
mensions a and b.

For comparison purposes, a cross-section discussed by
de Leo et al. [10} having a width @ = 6 m, a height b =
6 m (using symbols of Fig. 3, which may differ from those
of [10]) and an infinitesimally thin inner conductor having
a width s = 5 m, was investigated.

Fig. 4 shows the dependence of the cutoff frequency of
the TE;; mode in the above structure on the size of the
determinant, using all four expressions (7), (14), (15),
and (16).

According to [10], the cutoff frequency deduced by the
authors was 31.82 MHz, while the frequency reported by
Tippet er al. was 32.4 MHz and that by Mittra ez al. 32.0
MHz.

Similar computations were performed for other modes,
including the TEq; and TE,; modes and results quoted in
[10] were found to fall within the range of the lower and
upper bounds. Computations were also carried out for the
TE,, mode of a rectangular coaxial line with an inner con-
ductor of finite width and results compared with those de-
duced by Pyle [2], [3] who used finite differences; Pyle
derived his result for a single ridge waveguide but it is
clear that the cutoff wavelength of the TE,;, mode is the
same as that of the appropriate rectangular coaxial line.
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Fig. 5. TM,, mode cutoff frequency of a rectangular coaxial waveguide (a

=6m, b =6m, s =5 m, inner conductor infinitesimally thin) as a
function of the determinant size M.

The effect of varying the size of the determinant on the
cutoff frequency of the TM, mode in the structure for
which the cutoff frequency of the TE;, mode was inves-
tigated is shown in Fig. 5; again, expressions (7), (14),
(15), and (16) were used for that purpose but no compar-
ison figures are available in [10].

All numerical results were obtained using the EPFL
VAX computer using single precision arithmetic.

The rate of convergence of the inner summation was
found to vary considerably, depending on which of the
four formulae (7), (14), (15), or (16) was used and on the
mode being investigated; if necessary, convergence can
be improved using accelerating factors [4]. In all cases
the number of terms of the inner summation was increased
until it became apparent that a further increase would have
no effect upon the result.

Moreover, the above findings suggest that the rate of
convergence of the end result (cutoff frequency or wave-
length) again varies considerably, depending on which
expression is used in any particular case.

Under no circumstances were the curves obtained using
inner and upper bound formulae ever found to cross. Thus,
for example, referring to Fig. 4 it can be confidently ex-
pected that the cutoff frequency of the TE;; mode lies be-
tween 31.797 and 31.817 MHz. If desired, the range of
uncertainty could have been further reduced but the im-
mediate objective of this paper is to demonstrate the tech-
nique rather than obtain a highly accurate result for a par-
ticular mode and some particular geometry.

IV. CONCLUSION

It has been shown that the lower and upper bounds of
the cutoff frequencies of the TE and TM modes of a large
number of different waveguides can be readily deduced
using two different methods in each instance.

While the rate of convergence depends on a particular
mode and geometry, the technique has the potential of
yielding highly precise results limited only by such fac-
tors as computer word length and roundoff errors.

The technique is applicable to a large number of differ-
ent geometries and cross-sections and it is strongly be-
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lieved that it has the potential to be used as a benchmark,
facilitating the assessment and comparison between other
generally applicable methods for which lower and upper
bounds are not readily available or are not adequate.
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