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Lower and Upper IBounds of Cutoff Frequencies in

Metallic Waveguides
Lucian Gruner, Member, IEEE

Abstract–It is shown how the upper and lower bounds of the

cutoff frequencies of TE and TM modes in many waveguides

bounded by metallic lossless walls and which maybe hollow or

comprise one or more inner conductors, can be computed using

two independent methods. The methods are applicable when-
ever the cross-section of the waveguide can be split up into sev-

eral regions bounded by lines having a fixed coordinate and
includes several cases of practical interest. The theory is illus-

trated with reference to a rectangular coaxial limle.

I. INTRODUCTION

T HE MODE matching technique [1] occupies an im-

portant place among various numerical techniques

used to solve microwave problems in general and wave-

guide problems in particular. It is applicable whenever the

cross-section of the waveguide can be split up into several

regions bounded by lines having a fixed coordinate in a

separable system of coordinates.

Earlier [2] the author has presented some preliminary

findings generalizing his previous results [31-[7] and fa-

cilitating the determination of the mode spectrum of a

wide range of waveguides bounded by metallic walls. A

few of the cross-sections, to which the theory to be dis-

cussed in what follows can be applied, are shown in Fig.

1.

It was noted earlier [2] that on the basis of preliminary

results, it might be possible to deduce upper and lower

bounds of the cutoff frequencies of various modes and this

has now been confirmed. In addition, since the above pa-

per [2] was written, the author realised that there was not

one but two independent methods of afriving at the upper

and lower bounds and this will be discussed in what fol-

lows.

The fact that upper and lower bounds of the lowest res-

onant TM mode of a re-entrant cylindrical cavity could

be calculated using a mode matching procedure was noted

by Taylor [8], whose findings were based on the work of

Chu [9] but no attempt was made to generalize the results,

nor has the matter been apparently followed up in pub-

lished literature.

Manuscript received July 3, 1991; revised November 21, 1991.
The author was with the Ecole Polytechnique Fc5d&ale de Lausanne,

Switzerland, on leave from the Department of Electrical and Computer

Systems Engineering, Monash University, Clayton, Melbourne, Victoria,
3168 Australia. He has since rejoined Monash University.

IEEE Log Number 9106774.

Fig. 1. A few waveguide cross-sections.

~ In what follows, it is proposed to deduce formulae fa-

cilitating the determination of the lower and upper” bounds

and illustrate the procedure with reference to a rectangular

coaxial line, bounded by lossless metallic walls.

In the past the cutoff frequencies of rectangular coaxial

lines have been determined by the author. and other inves-

tigators [3], [4], [6], [10], [11]. In all cases only either

the lower or the upper bound but not both were deduced.

The ability to determine both the upper and lower

bounds, to be discussed in what follows,, has the two-fold

advantage of making it potentially possible to obtain a

considerably more accurate result and reducing the time

required to do so since only lower order determinants need

to be considered.

II. GENERAL THEORY

Consider a lossless uniform homogeneous waveguide

having a cross-section which can be split up into two re-

gions having fixed coordinates in an orthogonal system of

coordinates. For the purpose of deducing the cutoff fre-

quencies of TE modes, we express the longitudinal com-

ponents of the magnetic field intensity HZ in the two re-

spective regions (which need not be bounded by straight

lines, as shown in Fig. 2). by the following two Fourier

series:

m

& = p4LfXxlMH x21 (1)

m

H,*= x Bmgm(xl)r#); (x2).
m

(2)
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Fig. 2. A composite waveguide cross-section.

In the above formulae, xl and X2 are coordinates of the

mutually orthogonal axes of the system of coordinates

(rectangular, cylindrical etc.)

The functions @~(xl) and 4 ~ (X2) satisfy orthogonality

conditions of the form:

and

in the two respective regions while w 1 and W2 are appro-

priate weighting functions.

Moreover A (xl) and g~ (xl) do not fulfill any orthogo-

nality conditions but are required to meet the boundary

conditions of the particular problem while Al and Bn are

constant Fourier coefficients.

Let xl = d represent the fixed coordinate of the bound-

ary between the two regions in Fig. 2. In addition, with

the view of simplifying the notation, we denotejd = J (xl

= d), g~d = g~(x, = d).
Furthermore ~jd and g~d represent the derivatives of j

and g~ respectively, evaluated at xl = d.

Hence, using the above notation, the continuity of the

longitudinal component of the magnetic field intensity at

the common boundary is satsified, provided

while the continuity of the transverse component of the

electric field intensity implies that

(4)

Remembering that a homogeneous lossless waveguide is

being considered and both regions are filled with the same

medium, multiplying (3) by W2@~ and (4) by wl~ ~(k =

1) respectively and integrating shows that

&t&(w2@:@;)l% z %&d(W2@:@;) 1% (5)

when it is noted that along the boundaries a 12 to C122as

well as CY21to a 11 the electric field intensity vanishes.

Moreover, for the purpose of arriving at a numerical so-

lution, the infinite series in (3) and (4) must be truncated,

and hence only L and M terms respectively are retained in

(5) and (6).

When the coefficients Al are eliminated from (5) and (6)

and the order of summation is interchanged, we find that

1–&-&nd(w26:+i) 1% =0. (7)

Equations (7) have a solution only if their determinant

vanishes and hence the eigenvalues (cutoff frequencies)

are determined by equating the determinant of the M x

kl matrix to zero. It is clear that increasing the number of

terms of the inner summation L is considerably less costly

and time-consuming than increasing the order of the de-

terminant M. Hence L can be made very much larger than

M and the inner summation can be performed to a high

degree of accuracy, especially if accelerating factors [4]
are used.

With reference to (3) and (5), it is evident that the con-

tinuity of the magnetic field intensity at the common

boundary surface can be almost perfectly satisfied. On the

other hand the mismatch of the electric field intensity (6) ,

can be expected to be much more severe if M << L.

Next, if we let
M

H,l = ~ 4nfm~; (8)
m

L

HZ2 = ~ B1glc#); (9)

and hence

(11)

and multiply (10) by wio~(k = 1) and (11) by wlo~ and

then perform the integration over the respective regions,

then we find that

$’A,~md(W@;n@;)\~ = &&d(W2@?@?) l:: (12)

It will be noted that (8) and (9) differ from (1) and (2)

only in that different indices are used; this has been done

with the view of ensuring that the index 1 is reserved for

the inner summation. Moreover the transformation on the

right hand side of ( 13) follows from the fact that the elec-
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tric field intensity vanishes along a ~zto cxzzand CY2,to al,

when xl = d (Fig. 2).

This time the Fourier coefficients B, can be eliminated

and we find that

1–~m~h(wl~idi) lj~~ = 0. (14)

Noting again that L can be made very much larger than

M, with reference to (11) and (13) we observe that this

time the continuity of the electric field intensity along the

common boundary can be almost perfectly satisfied, while

the magnetic field intensity on both sides of the boundary

is much more severely mismatched.

When equations El ~ and E21 are used to arrive at nu-

merical results, it becomes apparent that as the size of the

determinant (and hence M) is increased, the magnitude of

the cutoff frequency increases for El ~ and decreases for

E21; in other words, while El ~ makes it possible to deduce

the lower bound of the cutoff frequency, an upper bound

is obtained with the aid ofE21.

This result may be understood with reference to the

work of Chu [9] and was noted in one specific instance

by Taylor [8].

Instead of proceeding as above, one can multiply equa-

tion (3) by WI@ ~ (letting k = 1), (4) by W24 ~ to be fol-

lowed up in both cases by the appropriate integrations.

Proceeding in a Similar manner as above, we find that

Furthermore, when (10) and (11) are multiplied by w,@ ~

as well as W2@~ respectively (letting k = /) and the ap-

propriate integrations are performed, we can eliminate the

B1 Fourier coefficients instead to deduce that

It will be noted that (7) and (15) as well as (14) and (16)

respectively have a similar but not identical form. One

major difference are different limits of the two inner prod-

ucts of the inner sum evident in E12 and E22. The two inner

products of E12 and E22 have the same limits only if al,

= CY21and CY12= ct22, while no such considerations apply

to El ~and -E21. As an example, when a rectangular coaxial

line is considered, only a single inner product must be

evaluated using (9) and (14) irrespective of whether the

inner conductor is infinitesimally thin, or not. C)n the other

hand, using (15) and (16) two different inner products are
required, unless the conductor is infinitesimally thin, in

which case one is sufficient.

When eigenvalues (cutoff frequencies) are calculated

with the aid of E12 and E22, we find that as the size of the

determinant (i.e., M) is increased, the eigenvalues de-

crease when E12 is used and increase when E22 is applied;

the reasons are similar to those discussed with reference

to Ell and E21.

To put it differently, E12 yields an upper bound while

E22 yields a lower bound.

Hence there are effectively two independent methods of

arriving at the lower and upper bounds of an eigenvalue,

using either El, or E22 and E21 or E,z, respectively.

Next we consider the TM modes. In this case (1) and

(2) are replaced by

0)

E,, = ~A1fi(xl)cj; (x2) (17)

EZ2 = ii Bmg,. (XI) 4:, (X2) (18)
m

and (8) and (9) must be modified in a similar manner.

Evidently functions j, g,., @~ and c$~, which must sat-

isfy different boundary conditions, as well as the Fourier

coefficients Al and 11,,1are no longer the same as in (1) and

(2) or (8) and (9) for that matter. However the derivation

of the results follows in an analogous manner and expres-

sions (7) for En, (14) for E21, (15) for E12 and (16) for

E22 still hold, :noting that all symbols must be given a dif-

ferent interpretation. Moreover, it is clear that whenever

the continuity of the electric field intensity is satisfied al-

most perfectly for TE modes, the continuity of the mag-

netic field intensity is satisfied by TM modes and vice

versa. Designating the left hand side of (7), (14), (15),

and (16), respectively as Ml 1, M21, it412 and it422 for TM

modes, we find for example that while El 1 yields a lower

bound, the cutoff frequency calculated with the aid of Ml 1

(having the same form as El ~apart from the interpretation

of symbols) will yield the upper bound etc.

All the above results were derived assuming the pres-

ence of a single common boundary between two regions

(Fig. 2). Considerations of symmetry make it possible to

extend the range of waveguide cross-sections to which the

above theory can be applied and a rectangular coaxial line

having a symmetrically located inner conductor [3] may

serve as an example.

Finally the above theory can be readily extended to sit-

uations when it is necessary to consider three regions and

hence there are two boundaries along which the field must

be matched. In this case two equations from the above set

(7), (14), (15), and (16) must be solved simultaneously

and crossed rectangular coaxial structures [5] may serve

as an example,

III. RECTANGULAR COAXIAL LINES

As an example, to illustrate the above theory, we con-

sider a symmetric rectangular coaxial line for which cutoff

frequencies are well known [3]-[4], [6], [10] -[12].

Using the nc}tation of the author’s earlier paper [3], we

note that (Fig. 3) so long as the inner conductor is sym-

metrically located with respect to the outer conductor, it
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Fig. 3. Cross-section of a rectangular coaxial waveguide
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Fig. 4. TEI, mode cutoff frequency of a rectangular coaxial waveguide (a

– 6 m, b = 6 m, s = 5 m, inner conductor infinitesimally thin) as a—

function of the determinant size M.

is possible to consider only a quarter of the cross-section

(Fig. 3(b)), and thereby simplify the analysis. In this case

the field must be matched along FF’, while PN and TL

are electric or magnetic walls, depending on mode order.

Moreover, when the inner conductor is infinitesimally

thin, then it may be considered as an electric wall and

some modes have cutoff wavelengths which are the same

[4] as those of a hollow waveguide having the same di-

mensions a and b.

For comparison purposes, a cross-section discussed by

de Leo et al. [10] having a width a = 6 m, a height b =

6 m (using symbols of Fig. 3, which may differ from those

of [ 10]) and an infinitesimally thin inner conductor having

a width s = 5 m, was investigated.

Fig. 4 shows the dependence of the cutoff frequency of

the TEI ~ mode in the above structure on the size of the

determinant, using all four expressions (7), (14), (15),

and (16).

According to [10], the cutoff frequency deduced by the

authors was 31.82 MHz, while the frequency reported by
Tippet et al. was 32.4 MHz and that by Mittra et al. 32.0

MHz.

Similar computations were performed for other modes,

including the TEO1 and TE21 modes and results quoted in

[10] were found to fall within the range of the lower and

upper bounds. Computations were also carried out for the

TEIO mode of a rectangular coaxial line with an inner con-

ductor of finite width and results compared with those de-

duced by Pyle [2], [3] who used finite differences; Pyle

derived his result for a single ridge waveguide but it is

clear that the cutoff wavelength of the TEIO mode is the

same as that of the appropriate rectangular coaxial line.
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Fig. 5. TM,, mode cutoff frequency of a rectangular coaxial waveguide (a
= 6 m, b = 6 m, s = 5 m, inner conductor infinitesimally thin) as a

function of the determinant size M.

The effect of varying the size of the determinant on the

cutoff frequency of the TM11 mode in the structure for

which the cutoff frequency of the TE11 mode was inves-

tigated is shown in Fig. 5; again, expressions (7), (14),

(15), and (16) were used for that purpose but no compar-

ison figures are available in [10].

All numerical results were obtained using the EPFL

VAX computer using single precision arithmetic.

The rate of convergence of the inner summation was

found to vary considerably, depending on which of the

four formulae (7), (14), (15), or (16) was used and on the

mode being investigated; if necessa~, convergence can

be improved using accelerating factors [4]. In all cases

the number of terms of the inner summation was increased

until it became apparent that a further increase would have

no effect upon the result.

Moreover, the above findings suggest that the rate of

convergence of the end result (cutoff frequency or wave-

length) again varies considerably, depending on which

expression is used in any particular case.

Under no circumstances were the curves obtained using

inner and upper bound formulae ever found to cross. Thus,

for example, referring to Fig. 4 it can be confidently ex-

pected that the cutoff frequency of the TEI, mode lies be-

tween 31.797 and 31.817 MHz. If desired, the range of

uncertainty could have been further reduced but the im-

mediate objective of this paper is to demonstrate the tech-

nique rather than obtain a highly accurate result for a par-

ticular mode and some particular geomet~.

IV. CONCLUSION

It has been shown that the lower and upper bounds of

the cutoff frequencies of the TE and TM modes of a large

number of different waveguides can be readily deduced

using two different methods in each instance.

While the rate of convergence depends on a particular

mode and geometry, the technique has the potential of

yielding highly precise results limited only by such fac-

tors as computer word length and roundoff errors.

The technique is applicable to a large number of differ-

ent geometries and cross-sections and it is strongly be-
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lieved that it has the potential to be used as al benchmark,

facilitating the assessment and comparison between other

generally applicable methods for which lower and upper

bounds are not readily available or are not adequate.
.’
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